Market study on Bio-based Polymers in the World

Capacities, Production and Applications: Status Quo and Trends towards 2020

Edited by: Adriana Sanz Mirabal, Lena Scholz, Michael Carus
Market study on

Bio-based Polymers in the World
Capacities, Production and Applications:
Status Quo and Trends towards 2020

nova-Institut GmbH

Edited by: Adriana Sanz Mirabal, Lena Scholz, Michael Carus

February 2013
The expert team of the Market Study (authors) has made every attempt to ensure the accuracy and reliability of the information provided on this study. The included market and trend analyses and forecasts are performed to the best of the authors' knowledge and beliefs on the basis of the current state of knowledge and the latest research and inquiries. Nevertheless, authors, editors, and publisher do not warrant the information contained in this study, to be free of errors or will prove to be accurate. The information, conclusions and findings provided in this study are not intended as legal or financial advice. The authors cannot accept liability for actions taken based on the content of this Market Study.

© 2013 nova-Institut GmbH, Germany

Publisher:
Michael Carus (v.i.S.d.P), nova-Institute GmbH, Chemiepark Knapsack, Industriestr. 300, 50354 Huerth Germany, Phone: +49 (0) 2233 48 14 40, Fax: +49 (0) 2233 48 14 50, contact@nova-institut.de, www.nova-institut.eu

Layout: ftdesign - kreativ Büro www.ftd-kreativbuero.de

All rights reserved (including those of the translation into other languages).
No part of this publication shall be reproduced, transmitted, displayed, published, broadcast or resold in whole or in part in any form, without the prior written consent of the authors.
Registered names, trademarks, etc. used in this study, even when not specifically marked as such, are not to be considered unprotected by law. The rights remain with the holders of the respective trademarks. The nomination of product- or service-designations serves exclusively the purposes of identification.

The full 360-page report contains three main parts – “market data”, six “trend reports” and 114 “company profiles” - and can be ordered for 6,500 € plus VAT at www.bio-based.eu/market_study. This also includes one-year access to the “Bio-based Polymers Producer Database", which will be continuously updated.

Authors (in alphabetical order)
Wolfgang Baltus, National Innovation Agency (NIA), Thailand
Janjpeter Beckmann, nova-Institut GmbH, Germany
Dirk Carrez, Clever Consult, Belgium
Michael Carus, nova-Institut GmbH, Germany
Lara Dammer, nova-Institut GmbH, Germany
Roland Essel, nova-Institut GmbH, Germany
Harald Kaeb, narocon, Germany
Jan Ravenstijn, Jan Ravenstijn Consulting, Netherlands
Adriana Sanz Mirabal, nova-Institut GmbH, Germany
Lena Scholz, nova-Institut GmbH, Germany
Fabrizio Sibilla, nova-Institut GmbH, Germany
Stephan Zepnik, Fraunhofer UMSICHT, Germany
Table of Content

1. Executive Summary .. 6
2. Research team and Advisory Board for the market study 19

Market Data
3. Market Data ... 22
4. Qualitative analyses of selected bio-based Polymers 62

Trend Reports
5. Policies impacting bioplastics market development 72
6. Bio-based polymers, a revolutionary change 107
7. Asian markets for bio-based resins .. 144
8. Environmental evaluation of bio-based polymers and plastics 175
9. Green Premium within the value chain from chemicals to bioplastics 193
10. Brands: Sustainability Strategies and Bioplastics –
 Information from the fast moving consumer goods industries (focus packaging) 213

Company Data
11. Company Profiles .. 229
12. Company product index .. 353
13. List of Acronyms .. 362
Bio-based polymers - Production capacity will triple from 3.5 million tonnes in 2011 to nearly 12 million tonnes in 2020

Bio-based drop-in PET and PE/PP polymers and the new polymers PLA and PHA show the fastest rates of market growth. The lion’s share of capital investment is expected to take place in Asia and South America.

1.1 Summary

Germany’s nova-Institute is publishing the most comprehensive market study of bio-based polymers ever made. The nova-Institute carried out this study in collaboration with renowned international experts from the field of bio-based polymers. It is the first time that a study has looked at every kind of bio-based polymer produced by 247 companies at 363 locations around the world and it examines in detail 114 companies in 135 locations. Considerably higher production capacity was found than in previous studies. The 3.5 million tonnes represent a share of 1.5% of an overall construction polymer production of 235 million tonnes in 2011. Current producers of bio-based polymers estimate that production capacity will reach nearly 12 million tonnes by 2020. With an expected total polymer production of about 400 million tonnes in 2020, the bio-based share should increase from 1.5% in 2011 to 3% in 2020, meaning that bio-based production capacity will grow faster than overall production.

The most dynamic development is foreseen for drop-in biopolymers, which are chemically identical to their petrochemical counterparts but at least partially derived from biomass. This group is spearheaded by partly bio-based PET (Bio-PET) whose production capacity will reach about 5 million tonnes by the year 2020, using bioethanol from sugar cane. The second in this group are bio-based polyolefins like PE and PP, also based on bioethanol. But “new in the market” bio-based polymers PLA and PHA are also expected to at least quadruple the capacity between 2011 and 2020. Most investment in new bio-based polymer capacities will take place in Asia and South America because of better access to feedstock and a favourable political framework. Europe’s share will decrease from 20% to 14% and North America’s share from 15% to 13%, whereas Asia’s will increase from 52% to 55% and South America’s from 13% to 18%. So world market shares are not expected to shift dramatically, which means that every region of the world will experience development in the field of bio-based polymer production.

Michael Carus, managing director of nova-Institute, reacted to the survey results thus: “For the very first time we have robust market data about worldwide production capacity of all bio-based polymers. This is considerably higher than in previous studies, which did not cover all polymers and producers. The forecast of a total capacity of 12 million tonnes by 2020 – a tripling of 2011 levels – suggests that bio-based polymers are definitely polymers for the future. It is also shown that the development of bio-based polymers is still very dynamic. Only five years ago, nobody would have expected bio-PET to grow to the biggest group among the bio-based polymers due to an initiative by one big brand-owner. This could happen again with any other bio-based polymer. PLA and PHA also have a remarkable growth ahead of them, even without the existence of such a ‘supply chain captain’.”
1.2 Study background

The bio-based polymers branch is a dynamic, versatile field, in which bio-based polymers have reached development stages that range from research level, via initial market adoption to longterm established performance plastics like cellulosics or nylon – all of them revealing significant market growth.

A number of factors affect the growth rate of the bio-based polymer branch. These factors include state policy, technology, feedstock cost, competition (biomass versus fossil fuels), crude oil prices, consumer acceptance, and, last but not least, access to clear and reliable market data.

There was in fact broad agreement - not only from the major industrial players but also from the user side - about the need for solid, transparent and worldwide market data about the bio-based polymer branch.

This need was a major stimulus for conducting this market survey. We have therefore tried to provide some clarity and transparency to the market by launching the most comprehensive international market study of bio-based polymers to date.

During a preparatory phase from August 2011 to the end of that year, interested stakeholders from the bio-based polymer branch were invited to become a partner of the study. The multi-client survey was funded by 26 renowned companies and institutions from 11 countries around the world. These companies had full access to intermediate results and sat on the Advisory Board, which met four times during the project (see the full list at http://www.bio-based.eu/market_study/).

1.3 Methodology

The field of bio-based polymers is broad and the available information very diverse and sometimes inconsistent. This can lead to confusion and misinterpreted results. It therefore seems crucial to explain the methodology that we used for this survey.

This study focuses exclusively on bio-based polymer producers, and the market data therefore does not cover the bio-based plastics branch. We must clearly differentiate between these two terms. A polymer is a chemical compound consisting of repeating structural units (monomers) synthesized through a polymerization or fermentation process, whereas a plastic material constitutes a blend of one or more polymers and additives.

Market data covers only the first polymer producers, excluding plastic and compound processing in an attempt to avoid double counting over the various steps in the value chain. Starch blends are the single exception among plastics to have been included in the market research. They are always used in complex blends of many components such as aliphatic polyesters (e.g. PCL, PLA, PBAT, PBS). In order to also avoid double counting here, it was attempted to leave out the capacities of bio-based polymers used in starch blends.

The focus of the study is on construction polymers, i.e. the polymers that will later constitute the structural mass of the finished plastic part. Functional polymers used in inks, coatings, adhesives or simply as a performance enhancer in other materials were only covered selectively and are not included in the totals given in this summary. Regenerated cellulose (e.g. cellophane and viscose), natural rubber and linoleum are beyond the scope of this study.

This market survey covers current market trends on bio-based polymers, i.e. derived from biomass (which may be biodegradable or not). However, we decided to include market data on some polymers that are currently still fossil-based, namely polybutylene succinate (PBS) and polybutyleneadipat-
terephthalate (PBAT). It may seem paradoxical, but the reasons for covering their production capacities are as follows. Their development is highly linked to the development of other bio-based polymers, as they are often used to enhance their properties in bio-based compounds. In the case of PBS, which is currently produced from fossil resources in relatively small quantities, the capacity development is spurred by the development of its bio-based precursors, as bio-based succinic acid can be produced at lower cost than its fossil-based alternative. They are both drop-in processable, i.e. every fossil-based PBS or PBAT producer can switch to bio-based PBS or PBAT if the bio-based diacids and diols become available, with no need to change equipment. From announcements and seeing the capacity development in their bio-based precursor chemicals, the polymers of the companies covered here are expected to be increasingly bio-based, reaching shares of 50% (PBAT) and 80% (PBS) by 2020.

This study considers only announced capacities. The research work is based on the analysis and discussion of existing publications, press releases and market studies, questionnaires, face-to-face expert interviews (many at CEO level), and expert workshops and conferences held during the study period. On the other hand, the database gathers a broader list of companies, e.g. start-ups that have no announced volumes as yet but may become leading companies in the future. The database will be continuously updated and act as a perfect database for future market surveys.

The total estimate of polymer production capacity in 2020 is mainly based on the forecasts of companies already producing bio-based polymers (or precursors) today. That could lead to an underestimation of future capacities, because the method does not take account of new players.

Table 1 gives an overview on the covered bio-based polymers and the producer companies with their locations. The database contains a total of 247 companies in 363 locations. More detailed information is provided for 114 companies in 135 locations.

The average biomass content of the polymers (Table 1) is used to generate Figure 3 from Figure 2.

Table 1: Bio-based polymers, short names, average biomass content, producer companies and locations

<table>
<thead>
<tr>
<th>Bio-based polymers</th>
<th>Average biomass content of polymer</th>
<th>Producing Companies until 2020</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose Acetate</td>
<td>CA 50%</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Polyamide</td>
<td>PA rising to 60%*</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Polybutylene Adipate Terephthalate</td>
<td>PBAT rising to 50%*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Polyethylene Succinate</td>
<td>PBS rising to 80%*</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>PE 100%</td>
<td>3**</td>
<td>2</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>PET 30% to 35%***</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Polyhydroxy Alkanoate</td>
<td>PHAs 100%</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Polylactic Acid</td>
<td>PLA 100%</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>PP 100%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Polyvinyl Chloride</td>
<td>PVC 43%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>PUR 30%</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Starch Blends *****</td>
<td>40%</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Total companies covered with detailed information in this report</td>
<td></td>
<td>114</td>
<td>135</td>
</tr>
<tr>
<td>Additional companies included in the “Bio-based Polymer Producer Database”</td>
<td></td>
<td>133</td>
<td>228</td>
</tr>
<tr>
<td>Total companies and locations recorded in the market study</td>
<td></td>
<td>247</td>
<td>363</td>
</tr>
</tbody>
</table>

* Currently still mostly fossil-based with existing drop-in solutions and a steady upward trend of the average bio-based share up to given percentage in 2020
** Including Joint Venture of two companies sharing one location, counting as two
*** Upcoming capacities of bio-pTA (purified Terephthalic Acid) are calculated to in-crease the average bio-based share, not the total bio-PET capacity
**** Starch in plastic compound
1.4 Main results

1.4.1 Building blocks and monomers as a precursor of polymers

Figure 1 shows the most important pathways from biomass to building blocks to polymers.

The thickness of the arrows is related to the current market relevance of the corresponding building blocks, while the yellow coloured areas illustrate the direct conversion of different polymers (namely natural rubber, starch-based polymers, lignin-based polymers and cellulose-based polymers) from biomass. Finally, green-coloured pathways correspond to the routes derived from glucose, whereas the purple and the orange ones coincide with the glycerol and fatty acid pathways respectively. Only existing routes currently engaged in industrial production have been taken into consideration. There are many more pathways under research or at pilot stage. However, one can clearly see that bio-based chemical producers currently have the potential to build extensive alternative supply chains for a variety of chemicals and polymers (e.g. PU, PA).
There is a strong growth in the market for bio-based precursors for drop-in solutions, which are also partially covered by the report and database. Often there are not yet any announced capacities at the polymer producer stage, so the study could not reflect the volumes of polymers derived from these precursors.

There is also a strong upward potential for bio-based PA precursors for example, as well as plans to make commodity PA like nylon 6.6 and nylon 6 (partly) bio-based. For different building blocks like adipic acid (2,800 kt market in total), HMDA, caprolactam, etc. the bio-based market share is purely a matter of price compared to petrochemical routes, which is already lower in some cases.

The ongoing increase in bio-based MEG and pTA capacity has a considerable impact on the production capacities of partly bio-based PET. Our forecast for the total Bio-PET production capacity is based on the forecast of bio-based MEG production capacity in particular — supported by announcements of future market demand.

1.4.2 Bio-based polymers

The report shows that the production capacity of bio-based polymers will triple from 3.5 million tonnes in 2011 to nearly 12 million tonnes by 2020. Bio-based drop-in PET and PE/PP polymers and the new polymers PLA and PHA show the highest growth rates on the market. Most capital investment is expected to take place in Asia and South America.

It is the first time that a study has looked at every kind of bio-based polymers produced by 247 companies at 363 locations around the world, and it examines 114 companies in 135 locations in detail (see Table 1). Considerably higher production capacity was found than in previous studies. The 3.5 million tonnes represent a share of 1.5% of an overall construction polymer production of 235 million tonnes in 2011. Current producers of bio-based polymers estimate that production capacity will reach nearly 12 million tonnes by 2020. With an expected total polymer production of about 400 million tonnes in 2020, the bio-based share will increase from 1.5% in 2011 to 3% in 2020, meaning that bio-based production capacity will grow faster than overall production.

Figures 2 and 3 show the main results of the survey. The most dynamic development is foreseen for bio-based PET (Bio-PET) with production capacity of about 5 million tonnes by the year 2020, based on bioethanol from sugar cane. The second are also drop-in biopolymers, which are chemically identical to their petrochemical counterparts but derived from biomass. Bio-based polyolefins like PE and PP, are polymerized from components, based on bioethanol. But also the “new” PLA and PHA bio-based polymers will more than quadruple their capacity between 2011 and 2020. There follow some details about Bio-PET and PLA. Many more details — including on other polymers — can be found only in the full report.
Figure 2: Bio-based polymers: Evolution of production capacities from 2011 to 2020

Figure 3: Biomass content applied in bio-based polymers: Evolution of production capacities from 2011 to 2020 (biomass content only, see Table 1)
1.4.3 Bio-based PET

The Coca-Cola Company, Ford Motor Company, H.J. Heinz Company, NIKE Inc. and Procter & Gamble announced in 2012 the formation of the Plant PET Technology Collaborative (PTC), a strategic working group focused on accelerating the development and use of 100% plant-based PET materials and fibre in their products. In just a few short years, The Coca-Cola Company has expanded from producing PlantBottleTM plastic in a single location to now having facilities in most of their major markets, with further expansion to come.

When such brand corporations join forces and build alliances, their impact on the supply chain becomes inevitably visible. Monoethylene glycol (MEG), a key component of PET resins, is already going to be produced in high volumes as bio-based diol in India (Indian Glycols LTD., 175,000 t/a) and Taiwan (Greencol Taiwan, 100,000 t/a). The Indian company JBF Industries plans for additional MEG capacities of 500,000 t/a in Brazil to come on-stream after 2015. Also developments in the production of bio-based purified terephthalic acid, the other monomer of bio-PET, have been announced.

As these precursors can be used to produce partly bio-based PET in any existing PET facility at relatively short notice, only very little of the bio-MEG capacity to come already matches announcements about the production of bio-PET. Companies already dedicating part of their PET capacities to the production of bio-PET are for example Teijin and Indorama Ventures, both located in Asia, with 100,000 t/a and 300,000 t/a respectively.

In the year 2011 about 620,000 tonnes bio-based PET were produced from bio-MEG, expected to grow to a production capacity of nearly 5 million tonnes in 2020.

1.4.4 PLA – polylactic acid

At 30 sites worldwide 25 companies have developed a production capacity of (presently) more than 180,000 tonnes per annum (t/a) of polylactic acid (PLA), which is one of the leading bio-based polymers. The largest producer, NatureWorks, had a capacity of 140,000 t/a in 2011. The other producers have current capacity of between 1,500 and 10,000 t/a.

According to their own forecasts, existing PLA producers are planning to considerably expand their capacity to reach around 800,000 t/a by 2020 (see Figure 2). There should be at least seven sites with a capacity of over 50,000 t/a by that time. A survey of lactic acid producers (the precursor of PLA) revealed that production capacity could even rise to roughly 950,000 t/a to meet concrete requests from.

In contrast to Figure 2, showing the evolution of production capacities of bio-based polymers, Figure 3 shows only the biomass content of the bio-based polymers. Because this share is much higher for the “new to the market” polymers like PLA and PHA compared to PET and PVC drop-ins, the polymer shares are different, as is total capacity.
1.4.5 Investment by region

Most of the investment in new bio-based polymer capacities will take place in Asia and South America because of better access to feedstock and favourable political frameworks.

Asia has become a key region for bio-based polymers and their precursors. Some examples are current developments in Thailand (Purac, PTT), India (India Glycol Ltd.), Taiwan (Greencol Taiwan), China (Henan Jindan, Shenzhen Ecomann, Tianan Biologic Materials, Tianjin Green Biomaterials) or Japan (Kaneka, Teijin Limited, Toyota), which include future or existing production of lactic acid, lactide, succinic acid, 1,4-BDO, MEG, PET and PHA.

The expanding global utilization of bio-ethanol for chemical building blocks has led to the establishment of large-scale production facilities for bio-based MEG in India and Taiwan and for bio-ethylene, precursor for e.g. PE, MEG but also EPDM, in Brazil. Furthermore, the bio-based drop-in market is developing fast in Asia, where many converters are SMEs and cannot afford important alterations to their existing processing equipment.

Europe’s share will decrease from 20% to 14% and North America’s share from 15% to 13%, whereas Asia’s will increase from 52% to 55% and South America’s from 13% to 18%.

![Evolution of the shares of bio-based production capacities in different regions](image)

Figure 4: Evolution of the shares of bio-based production capacities in different regions (without Cellulose acetate and Thermosets)
1.4.6 Share of bio-based polymers in the total polymer market

The final figure 5 gives an overview of all kinds of polymers including rubber products, man-made fibres and functional polymers – and not simply construction polymers as usual. This figure includes bio-based shares at different levels.

The share for construction polymers, which are the focus of the study, is 1.5%, but for polymers overall the bio-based share is even higher (8.2%) because of the higher bio-based shares in rubber (natural rubber) and man-made fibres (cellulosic fibres).

Figure 5: Polymers worldwide, bio-based shares (mostly 2011)

(*) Data from PlasticsEurope 2012. Original data show 45 Million t functional polymers plus 235 Million t construction polymers = 280 Million t total. We added in addition 10 Million t paper starch to the functional polymers -> new total: 290 Million t.

(**): nova-Institute 2013

plus Different additional sources.
1.5 Content of the full report

This over 360-page report presents the findings of nova-Institute’s year-long market study, which is made up of three parts: “market data”, “trend reports” and “company profiles”.

The “market data” section presents market data about total production and capacities and the main application fields for selected bio-based polymers worldwide (status quo in 2011, trends and investments towards 2020). Due to the lack of 100% reliable market data about some polymers, which is mainly due to the complexity of their manufacturing value chain structure (namely thermosets, cellulose acetate) or their pre-commercial stage (CO2-based polymers), this section contains three independent articles by experts in the field who present and discuss their views on current and potential market development. However, this part not only covers bio-based polymers, but also investigates the current bio-based building block platforms.

The “trend reports” section contains a total of six independent articles by leading experts in the field of bio-based polymers and plastics. Dirk Carrez (Clever Consult) and Michael Carus (nova-Institute) focus on policies that impact on the bio-based economy. Jan Ravenstijn analyses the main market, technology and environmental trends for bio-based polymers and their precursors worldwide. Wolfgang Baltus (NIA) reviews Asian markets for bio-based resins. Roland Essel (nova-Institute) provides an environmental evaluation of bio-based polymers, and Janpeter Beckmann (nova-Institute) presents the findings of a survey concerning Green Premium within the value chain leading from chemicals to bio-based plastics. Finally, Harald Kaeb (narcon) reports detailed information about brand strategies and customer views within the bio-based polymers and plastics industry. These trend reports cover in detail every recent issue in the worldwide bio-based polymer market.

The final “company profiles” section includes 114 company profiles with specific data including locations, bio-based polymers, feedstocks, production capacities and applications. A company index by polymers, and list of acronyms follow.

1.5.1 “Bio-based Polymers Producer Database” and updates to the report

To conduct this study nova-Institute developed the “Bio-based Polymers Producer Data-base”, which includes a company profile of every company involved in the production of bio-based polymers and their precursors. This encompasses (state of affairs in 2011 and forecasts for 2020) basic information on the company (joint ventures, partnerships, technology and bio-based products) and its various manufacturing facilities. For each bio-based product, the database provides information about production and capacities, feedstocks, main application fields, market prices and bio-based share.

Access to the database will be available end of April 2013. The database will be constantly updated by the experts who have contributed to this report. Buyers of the report will have free access to the database for one year.

Nova-Institute will generate an annual update of the report based on the existing report and the continuously updated database.
1.6 Authors of the study

Wolfgang Baltus (PhD) (Thailand) worked for BASF for 15 years and was responsible for the business development of environmental friendly coatings in Asia. Since 2008 Baltus has been working for the National Innovation Agency (NIA) in Bangkok. He is regarded as one of the leading experts on bio-based polymer markets and policy in Asia.

Dirk Carrez (PhD) (Belgium) is one of the leading policy consultants on a Bio-based Economy in Brussels. He was director of EuropaBio, the European Association for Bioindustries, until 2011. He is now Managing Director of Clever Consult, Brussels. In 2013 he was hired to be the coordinator of the new industrial association BIC (Bio-based Industries Consortium), which will organise the PPP (BRIDGE – Bio-based and Renewable Industries for Development and Growth in Europe) between the EU Commission and more than 40 bio-based economy companies.

Michael Carus (Dipl.-Phys.) (Germany) is a physicist and founder and managing director of nova-Institute. He has worked in the Bio-based Economy field for over 15 years. This includes biomass feedstock, bio-based chemistry, plastics, fibres and composites. His work focuses on market analysis, techno-economic and ecological evaluation and creating the political and economic framework for bio-based processes and applications. Carus is main author of the “Policy paper on Bio-based Economy in the EU: Level Playing Field for Bio-based Chemistry and Materials”, and is considered to be one of the leading experts for the industrial material use of biomass.

Seven experts from the nova-Institute team contributed to the study, and Adriana Sanz Mirabal managed the project for nova-Institute.

Harald Kaeb (PhD) (Germany) is a chemist and has an unblemished 20-year „bio-based chemistry and plastics“ track record. From 1999 to 2009 he chaired the board and built up “European Bioplastics”, the association that represents the bioplastics industry in Europe. Since 1998 he has worked as an independent consultant helping green pioneers and international brands to develop and implement smart business, media and policy strategies for bio-based plastics.

Jan Ravenstijn (MSc) (The Netherlands) has more than 35 years experience in the chemical industry with Dow Chemical and DSM, including 15 years in executive global R&D positions in engineering plastics, thermosets and elastomers. He is currently a visiting professor and consultant to the CEOs of biopolymer companies and has published several papers and articles on the market development of bio-based polymers. Ravenstijn is regarded as one of the world’s leading experts in his field.

Stefan Zepnik (PhD) (Germany) studied Business Engineering at the Martin Luther University Halle-Wittenberg and gained his PhD at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT. He became group manager for “Material Development” at the “Bio-based Plastics” department in 2013.
1.7 Figures

The figures included in this Summary can be downloaded in high resolution at
http://www.bio-based.eu/market_study/pressrelease

The zip-file includes:

- 13-03-06_Biomass_Polymers: “From biomass to polymers”
- 13-03-06_Figure_total: “Bio-based polymers: Evolution of production capacities from 2011 to 2020”
- 13-03-06_Figure_bb-share: “Biomass content applied in bio-based polymers: evolution of production capacities from 2011 to 2020”
- 13-03-06_Region_share: “Evolution of the shares of bio-based production capacities in different regions”
- 13-03-06_Polymers_worldwide: “Polymers worldwide, bio-based shares (mostly 2011)”

1.8 List of tables

Table 1: Bio-based polymers, short names, average biomass content, producer companies and locations ... 8

1.9 List of figures

Figure 1: From Biomass to Polymers ... 9
Figure 2: Bio-based polymers: Evolution of production capacities from 2011 to 2020 11
Figure 3: Biomass content applied in bio-based polymers: Evolution of production capacities from 2011 to 2020 (biomass content only, see Table 1). 11
Figure 4: Evolution of the shares of bio-based production capacities in different regions (without Cellulose acetate and Thermosets) 13
Figure 5: Polymers worldwide, bio-based shares (mostly 2011) 14
2 Research team and Advisory Board for the market study

2.1 Advisory Board

To pre-finance part of the study the nova-Institute developed the “Share and Win” concept to integrate renowned companies for a small, single payment.

During a preparatory phase from August 2011 to the end of that year, interested stakeholders from the bio-based polymer branch were invited to become a partner of the study. The multi-client survey was funded by 26 renowned companies and institutions from 11 countries around the world. These companies had full access to intermediate results and sat on the Advisory Board, which met four times during the project (see the full list at http://www.bio-based.eu/market_study/).

Their participation was decisive. They set out specific questions and needs, provided insights, ideas, advice and sources of information, and contributed to a better understanding of the business, market and industry trends.

Among the Advisory Board members are:

- Asahi Glass Co. (Japan)
- Bayer MaterialScience (Germany)
- Braskem (Brazil)
- Deloitte (The Netherlands)
- DSM (The Netherlands)
- Fischer Recycling (Germany)
- FNR (Germany)
- Ford (USA/Germany)
- IAR (France)
- IFP Energies nouvelles (France)
- NNFCC (UK)
- Omya (Switzerland/Germany)
- Ontario BioAuto Council (Canada)
- Plastics Europe (Brussels)
- Roquette (France)
- SABIC (Saudi Arabia)
- Sofiproteol (France)
- Sulzer (Switzerland)
- Tereos Syral (France)
- TNO (The Netherlands)
- Veolia (France)
- VTT (Finland)
- Wageningen UR-Food and Biobased Research (The Netherlands)
- Three other companies and associations

Our heartfelt thanks goes to all members of the Advisory Board, whose support and guidance have made this project possible!

The study was carried out by nova-Institute in conjunction with renowned international experts from the field of bio-based polymers. The project would never have borne such fruit without their expertise, continuous input and outstanding commitment.
2.2 The project team

- nova-Institute GmbH: Michael Carus, Adriana Sanz Mirabal, Lena Scholz, Janpeter Beckmann, Lara Dammer, Roland Essel, Achim Raschka and Fabrizio Sibilla, Daniel Steeg (IT Data base), Fabrice Tobler and Norma Sott (Layout) (Germany).
- Jan Ravenstijn Consulting: Prof. Ir. Jan Ravenstijn (Netherlands).
- National Innovation Agency (NIA): Dr. Wolfgang Baltus (Thailand).
- narocon Innovation Consulting: Dr. Harald Kaeb (Germany).
- Clever Consult: Dirk Carrez (Germany).

nova-Institute GmbH - SME

nova-Institute was founded as a private and independent institute in 1994. Its offices are located in the Chemical Park Knapsack in Hürth, which is in the chemical industry’s heartland near Cologne (Germany).

For over 18 years now, nova-Institute has been active in feedstock supply, techno-economic and environmental evaluation, market research, dissemination, project management and policy for a sustainable bio-based economy worldwide.

nova-Institute uses and creates expert knowledge along with innovative solutions to develop and advance the sustainable use of biomass in bio-based chemistry, industrial biotechnology and bio-based Products. nova has comprehensive contacts within the wide industrial and scientific network for research & development. Its communication services include conferences, a news portal for the bio-based economy including a newsletter, and the International Business Directory for Innovative Bio-based Plastics and Composites (iBIB).

Some of the key questions driving nova’s activities are: What are the most promising concepts and applications for industrial biotechnology, biorefineries and bio-based products? Which political and economic framework is necessary for sustainable growth of the bio-based economy? What are the challenges facing a post-petroleum age, or Third Industrial Revolution?

Michael Carus & his team

Michael Carus (Dipl.-Phys.) (Germany) is a physicist and nova-Institute’s founder and managing director and has worked in the field of the Bio-based Economy for over 15 years. This includes biomass feedstock, processes, bio-based chemistry, plastics, fibres and composites. His work focuses on market analysis, techno-economic and ecological evaluation and creating the political and economic framework for bio-based processes and applications (“level playing field for industrial material use”).

Michael Carus is considered to be one of the leading experts for the industrial material use of biomass. He is the main author of “Policy Paper on Bio-based Economy in the EU: Level Playing Field for Bio-based Chemistry and Materials” and of the study “The development of instruments to support the material use of renewable raw materials in Germany”. Both can be downloaded for free: www.bio-based.eu/policy

Michael Carus and his team are members of various international associations and committees, viz. founding member of the Cluster Industrial Biotechnology CLIB 2021 (Düsseldorf), member of the Federation of Reinforced Plastics (AVK), the “Natural Fibres Reinforced Plastics” subgroup (Frankfurt a. Main), member of kunststoffland NRW e. V. (Düsseldorf), Plastics Manufacturers Association in the
German State of North Rhine Westphalia, and the executive office of the European Industrial Hemp Association (EIHA). In addition, nova-Institute is a member of various national and EU-wide working groups (for example: CEN TC 411) on industrial biotechnology and biomaterials and a member of the Lead Market Initiative (LMI) “Ad-hoc Advisory Group for Bio-based Products” (since 2010).

- Adriana Sanz Mirabal, Bio-based Plastics and Composites (project manager)
- Lena Scholz, Bio-based Plastics and Composites
- Janpeter Beckmann, Economics and Resources
- Lara Dammer, Policy and Strategy
- Roland Essel, Environmental Evaluation & Management
- Achim Raschka, Bio-based Chemistry and Industrial Biotechnology
- Dr. Fabrizio Sibilla, Bio-based Chemistry and Industrial Biotechnology
- Daniel Steeg, Databases and Web 2.0
- Fabrice Tobler, Layout
- Norma Sott, Layout

Jan Ravenstijn Consulting – Jan Ravenstijn (MSc) (The Netherlands)

Jan Ravenstijn has more than 35 years experience in the chemical industry with Dow Chemical and DSM, including 15 years in executive global R&D positions in engineering plastics, thermosets and elastomers. He is currently a visiting professor and consultant to the CEOs of biopolymer companies and has published several papers and articles on the market development of bio-based polymers. Ravenstijn is regarded as one of the world’s leading experts in his field.

National Innovation Agency (NIA) – Wolfgang Baltus (PhD) (Thailand)

Wolfgang Baltus worked for BASF for 15 years and was responsible for the business development of environmental friendly coatings in Asia. Since 2008 Baltus has been working for the National Innovation Agency (NIA) in Bangkok.

He is regarded as one of the leading experts in bio-based polymer markets and policy in Asia. The activities of the NIA are covering biomass management, technology promotion, funding and supporting of new industries and business and national policy creation along the value chain of bio-based materials as well.

narocon Innovation Consulting – Dr. Harald Kaeb (PhD) (Germany)

Harald Kaeb is a chemist and has an unblemished 20-year „bio-based chemistry and plastics“ track record. From 1999 to 2009 he chaired the board and built up “European Bioplastics”, the association that represents the bioplastics industry in Europe. Since 1998 he has worked as an independent consultant helping green pioneers and international brands to develop and implement smart business, media and policy strategies for bio-based plastics.

Clever Consult – Dirk Carrez (PhD) (Belgium)

Dirk Carrez is one of the leading policy consultants on a Bio-based Economy in Brussels. He was director of EuropaBio, the European Association for Bioindustries, until 2011. He is now Managing Director of Clever Consult, Brussels. In 2013 he was hired to be the coordinator of the new industrial association BIC (Bio-based Industries Consortium), which will organise the PPP (BRIDGE – Bio-based and Renewable Industries for Development and Growth in Europe) between the EU Commission and more than 40 bio-based economy companies.
3 Market Data

3.1 Polyamide (PA) ... 24
3.2 Polybutylene Adipate Terephthalat (PBAT) 28
3.3 Polybutylene succinate (PBS) .. 32
3.4 Polyethylene (PE) ... 35
3.5 Polyethylene Terephthalat (PET) .. 38
3.6 Polyhydroxy Alkanoate (PHA) .. 41
3.7 Polylactic acid (PLA) ... 46
3.8 Polypropylene (PP) ... 50
3.9 Polyvinyl Chloride (PVC) .. 52
3.10 Starch Blends ... 54
3.11 List of tables ... 59
3.12 List of figures ... 59
3.10 List of tables

Table 1: Companies with (announced) production capacities of Polyamides 2011-2020 24
Table 2: Companies with (announced) production capacities of Polybutylene Adipate Terephthalat 2011-2020 ... 28
Table 3: Companies with (announced) production capacities of Polybutylene succinate 2011-2020 ... 32
Table 4: Companies with (announced) production capacities of Polyethylene 2011-2020 35
Table 5: Companies with (announced) production capacities of Polyethylene Terephthalat 2011-2020 ... 38
Table 6: Companies with (announced) production capacities of Polyhydroxy Alkanoate 2011-2020 ... 41
Table 7: Companies with (announced) production capacities of Polylactic acid 2011-2020 ... 46
Table 8: Companies with (announced) production capacities of Polypropylene 2011-2020 50
Table 9: Companies with (announced) production capacities of Polyvinyl Chloride 2011-2020 52
Table 10: Companies with (announced) production capacities of Starch Blends 2011-2020 54

3.11 List of figures

Figure 1: Evolution of production capacities for Polyamides 2011-2020 24
Figure 2: Actual production output of Polyamides and name plate production capacities for 2011 in the different regions .. 25
Figure 3: Polyamides Capacities, 2011-2020, America (North) in kt/a 25
Figure 4: Polyamides Capacities, 2011-2020, Asia in kt/a .. 26
Figure 5: Polyamides Capacities, 2011-2020, Europe in kt/a .. 26
Figure 6: World’s total production capacity of Polyamides 2011 and 2020 27
Figure 7: Application sectors for Polyamides 2011; C: construction polymer, F: functional polymer ... 27
Figure 8: Evolution of production capacities for Polybutylene Adipate Terephthalat 2011-2020 28
Figure 9: Actual production output of Polybutylene Adipate Terephthalat and name plate production capacities for 2011 in the different regions 29
Figure 10: Polybutylene Adipate Terephthalat Capacities, 2011-2020, Asia in kt/a 29
Figure 11: Polybutylene Adipate Terephthalat Capacities, 2011-2020, Europe in kt/a 30
Figure 12: World’s total production capacity of Polybutylene Adipate Terephthalat 2011 and 2020 30
Figure 13: Application sectors for Polybutylene Adipate Terephthalat 2011; C: construction polymer, F: functional polymer .. 31
Figure 14: Evolution of production capacities for Polybutylene succinate 2011-2020 32
Figure 15: Actual production output of Polybutylene succinate and name plate production capacities for 2011 in the different regions 33
Figure 46: World’s total production capacity of Polypropylene 2011 and 2020. 51
Figure 47: Evolution of production capacities for Polyvinyl Chloride 2011-2020. 52
Figure 48: Polyvinyl Chloride Capacities, 2011-2020, America (South) in kt/a 53
Figure 49: World’s total production capacity of Polyvinyl Chloride 2011 and 2020 53
Figure 50: Evolution of production capacities for Starch Blends 2011-2020 54
Figure 51: Actual production output of Starch Blends and name plate production capacities for 2011 in the different regions ... 55
Figure 52: Starch Blends: Capacities, 2011-2020, America (North) in kt/a 55
Figure 53: Starch Blends: Capacities, 2011-2020, America (South) in kt/a 56
Figure 54: Starch Blends: Capacities, 2011-2020, Asia in kt/a ... 56
Figure 55: Starch Blends: Capacities, 2011-2020, Europe in kt/a. ... 57
Figure 56: Starch Blends: Capacities, 2011-2020, Oceania in kt/a .. 57
Figure 57: World’s total production capacity of Starch Blends 2011 and 2020 58
Figure 58: Application sectors for Starch Blends 2011; C: construction polymer, F: functional polymer. ... 58
4 Qualitative analyses of selected bio-based Polymers

4.1 Cellulose Acetate (CA) ... 63
 4.1.1 History and production ... 63
 4.1.2 Typical characteristics and properties 63
 4.1.3 Market and applications .. 64
 4.1.4 References ... 65
4.2 Polymers and plastics from CO₂ .. 66
 4.2.1 Polypropylene carbonate .. 66
 4.2.2 Polyethylene carbonate and polyols 67
4.3 Thermosets ... 68
 4.3.1 Epoxies .. 68
 4.3.2 Polyurethanes ... 69
 4.3.3 Unsaturated polyester resins ... 70
4.4 List of tables ... 71
4.5 List of figures ... 71
5 Policies impacting bioplastics market development

Dirk Carrez,
Clever Consult, Belgium

Lara Dammer, Michael Carus,
nova-Institut GmbH, Germany

5.1 Introduction .. 73
5.2 Stimulating market demand .. 73
 5.2.1 Dedicated policies promoting bio-based products and bioplastics 74
 5.2.2 Mandates ... 78
 5.2.3 Public procurement policies ... 78
5.3 Overcoming investment barriers: Taxes and Subsidies .. 80
 5.3.1 US .. 80
 5.3.2 Brazil .. 80
 5.3.3 China .. 81
 5.3.4 Thailand .. 81
 5.3.5 Malaysia .. 81
5.4 Product specific policies ... 81
5.5 Research and Innovation policies focusing on bio-based products 83
 5.5.1 Europe .. 83
 5.5.2 US .. 84
 5.5.3 Japan .. 85
 5.5.4 China .. 85
 5.5.5 Brazil .. 86
 5.5.6 South Korea .. 86
5.6 Non-dedicated policies impacting bioplastics ... 87
 5.6.1 Europe .. 87
 5.6.2 Brazil .. 88
5.7 Other ... 88
 5.7.1 Feedstock-related policies .. 88
 5.7.2 Bioenergy related policies .. 90
5.8 General Bioeconomy Strategies and Policies ... 95
 5.8.1 Some examples .. 95
5.9 List of tables .. 100
5.10 List of figures .. 100
5.11 References .. 101
6 Bio-based polymers, a revolutionary change

Jan Ravenstijn,
Jan Ravenstijn Consulting, Netherlands

6.1 Introduction ... 108
6.2 Market trends .. 109
6.3 Technology trends ... 110
6.4 Environmental trends ... 112
6.5 Selected biopolymer families .. 116
 6.5.1 Polyhydroxyalkanoates (PHA) 116
 6.5.2 Polybutylenesuccinates (PBS) 120
 6.5.3 Natural Oil Polyols and CO2-based polyols for polyurethanes (PUR) . 128
 6.5.4 Polyamides (PA): .. 133
6.6 Customer views .. 138
6.7 New business concepts ... 140
 6.7.1 Pharmafilter BV (The Netherlands) 140
 6.7.2 Avantium Technologies B.V. (The Netherlands) 141
6.8 New value chain ... 141
6.9 List of figures ... 143
Asian markets for bio-based resins

Wolfgang Baltus,
National Innovation Agency (NIA), Thailand

7.1 Introduction .. 145
7.2 Asian markets for bio-based resins ... 146
7.3 Asia-Pacific region in numbers .. 149
7.4 Feedstock – Key to success in Asia-Pacific.. 151
 7.4.1 Sugarcane .. 154
 7.4.2 Cassava ... 156
 7.4.3 Threats .. 157
 7.4.4 Other feedstock and cost considerations ... 158
7.5 Policy Development ... 159
 7.5.1 Stimulation of investment ... 159
 7.5.2 End-of-life policy ... 159
7.6 Market growth factors .. 160
 7.6.1 Environmental factors .. 160
 7.6.2 Financial factors .. 161
 7.6.3 Technical factors .. 161
7.7 Selected biopolymer families – limitations, challenges and chances in Asia Pacific .. 162
 7.7.1 Polylactic acid (PLA) .. 162
 7.7.2 Polybutylene succinate (PBS) .. 167
 7.7.3 Bio-PE/Bio-PET ... 168
 7.7.4 PHA ... 170
 7.7.5 Polyamide .. 170
7.8 Case Study: The National Bioplastics Roadmap in Thailand –
 Situation and outlook after 4 years in operation .. 171
7.9 List of tables .. 173
7.10 List of figures .. 173
8 Environmental evaluation of bio-based polymers and plastics

Roland Essel and Michael Carus
nova-institut GmbH, Hürth, Germany

8.1 Introduction .. 176
8.2 Results from recent life cycle assessments 176
 8.2.1 CO₂ emissions and fossil resource depletion 176
 8.2.2 Other environmental impact categories 180
8.3 Feedstock supply and use of by-products 181
8.4 Genetically modified organisms 182
8.5 Biodiversity .. 183
8.6 Land use .. 184
 8.6.1 Land use change .. 185
 8.6.2 Land use efficiency ... 187
8.7 Conclusion ... 190
8.8 List of tables ... 192
8.9 List of figures ... 192
8.8 List of tables

Table 1: Comparison of non-renewable energy use and greenhouse gas emissions of petrochemical and bio-based polymers. ... 179

8.9 List of figures

Figure 1: Environmental impacts of different polymers in two impact categories: climate change and fossil resource depletion ... 177
Figure 2: Savings of fossil resources due to the production of bio-based polymers. 178
Figure 3: Reduction of greenhouse gas emissions through production of bio-based polymers. 179
Figure 4: Relative changes in the eco-profile of Ingeo PLA. 180
Figure 5: Average product-specific environmental impacts of bio-based materials in comparison to conventional materials ... 181
Figure 6: Comparison of greenhouse gas emissions and fossil resource depletion in the production of PHA from different feedstocks (Kim & Dale 2005, Harding et al. 2007) ... 182
Figure 7: Implications of biodiversity loss... 184
Figure 8: Worldwide use of agricultural biomass harvested in 2008 185
Figure 9: Illustration of direct and indirect land-use changes 186
Figure 10: Land use per tonne of bio-based PLA, bio-based PE and bioethanol from five crops valid for both current agricultural practice and if all residues/co-products are used. 187
Figure 11: Avoided NREU per hectare of land for the various bio-based products relative to their fossil based counterparts ... 188
Figure 12: Annual sugar/starch yield for selected feedstocks. 189
Figure 13: Land use efficiency of photovoltaic panels compared to biofuels 190
9 Green Premium within the value chain from chemicals to bioplastics

Janpeter Beckmann and Michael Carus
nova-Institut GmbH, Germany

9.1 Introduction ... 194
9.2 Green Premium - Use and definition 194
 9.2.1 Introductory market observations 194
 9.2.2 Types of performance and definition of Green Premium 197
 9.2.3 Green Premium market overview 200
9.3 Understanding the reasons for Green Premium prices 206
 9.3.1 Explanations and individual expert opinions 206
 9.3.2 Drivers .. 208
9.4 Summary and conclusions .. 209
9.5 List of tables ... 210
9.6 List of figures .. 210
9.7 References ... 211
10 Brands: Sustainability Strategies and Bioplastics - Information from the fast moving consumer goods industries (focus packaging)

Harald Kaeb,
narocon InnovationConsulting, Germany

10.1 Introduction – Why read this .. 214
10.2 Summary – what strikes the eye ... 215
10.3 List of Drivers – Brand Motivation (not weighed or prioritized) ... 216
 10.3.1 Sustainability targets in general & strategic ... 216
 10.3.2 Specific drivers for increased use of bioplastics (additional) ... 216
10.4 Company related specific aspects ... 217
 10.4.1 Coca-Cola .. 217
 10.4.2 Danone ... 219
 10.4.3 Friesland-Campina ... 221
 10.4.4 Henkel .. 221
 10.4.5 Nestlé ... 223
 10.4.6 Proctor & Gamble .. 225
 10.4.7 Unilever ... 226
10.5 Summary .. 227
11 Company Profiles

11.1	Acetati S.p.A.	232
11.2	Amyris	233
11.3	Anhui COFCO Biochemical & GALACTIC Lactic Acid Co., Ltd.	234
11.4	Anellotech Inc.	235
11.5	Anqing Hexing Chemical Co., Ltd.	236
11.6	Arizona Chemical	237
11.7	Arkema SA	238
11.8	Avantium Chemicals BV	240
11.9	BASF SE	241
11.10	Bayer MaterialScience	243
11.11	Bio-On Srl	244
11.12	BioAmber	245
11.13	BioBased Technologies LLC	247
11.14	BioMatera Inc.	248
11.15	Biomer	249
11.16	Biop Biopolymer Technologies AG	250
11.17	Bioplastech	251
11.18	BIOTEC Biologische Naturverpackungen GmbH & Co. KG	252
11.19	Braskem	253
11.20	Cardia Bioplastics Limited	254
11.21	Cargill Inc.	255
11.22	Cathay Industrial Biotech	256
11.23	Casda Biomaterials Co., LTD	257
11.24	Celanese Acetate LLC	258
11.25	Cereplast Inc.	259
11.26	Cerestech Inc.	260
11.27	Chemplast Sanmar Limited	261
11.28	Chengdu Dikang Biomedical Co., Ltd.	262
11.29	China New Materials Holding	263
11.30	Clarifoil	264
11.31	Daicel Chemicals Industries Ltd.	265
11.32	DaniMer Scientific LLC	266
11.33	DSM N.V.	267
11.34	DuPont	268
11.35	Eastman Chemical Company	269
11.36	Evonik Industries AG	270
11.37	Far Eastern New Century Corp.	271
11.38	Futerro	272
11.39	Galactic	273
12 Company product index

1,3-Propanediol

DuPont
METabolic EXplorer (METEX)

1,4-Butanediol

BioAmber
China New Materials Holding
Genomatica
Global Bio-Chem
Novamont SpA

Adipic acid

DSM N.V.
Rennovia
Verdezyne

Bio-paraxylene (bioPX)

Anellotech Inc.
Gevo
Global Bioenergies
Honeywell UOP
M&G Group (Gruppo Mossi & Ghisolfi)
Virent

Butanol

Cathay Industrial Biotech

Cellulose acetate

Acetati S.p.A.
Celanese Acetate LLC
Clarifoil
Daicel Chemicals Industries Ltd.
Eastman Chemical Company
Rhodia Acetow
WinGram Industry Co. Ltd. (Great River Qin Xin Plastic Manufacturer Co. Ltd.)